平成24年度
標準テスト問題
機械設計
試験時間 50分

注 意 事 項

1. 「用意」の合図があったら、問題用紙の最後についている解答用紙を切り離し、科、学年、組、番号及び氏名を記入すること。
2. 「始め」の合図があったら、問題が1から8まであることを確認し、解答をはじめること。
3. 解答の際、電卓またはポケコンを用いてよい。
4. 答は、解答欄に数値または記号を記入すること。
5. 計算結果に小数が含まれる場合は、小数第2位を四捨五入して小数第1位まで求めること。
 ただし、問題中に指示がある場合は、それに従うこと。
6. 円周率π=3.14，重力加速度g=9.8m/s²とする。
7. 試験終了後、問題用紙及び解答用紙を提出すること。

公益社団法人 全国工業高等学校名協会
1 次の各問に答えなさい。
（1）87mmを整数部が1ケタの10^2の形で表すと，何mになるか。
（2）質量6.5kgの物体にかかる重力は何Nか。
（3）4.8km/minは何m/sか。
（4）3.8×10^{-5}mは何μmか。
（5）1周7.2kmのコースを，平均速さ26km/hで2周した時に要する時間は何分か。

2 図1のように，点Oに力$F=120N$が作用したとき，次の各問の答に最も近い数値を解答群から選び記号で答えなさい。ただし，$\sin30^\circ=0.50$，$\cos30^\circ=0.87$，$\tan30^\circ=0.58$とする。

![Graph with force vectors](force_graph.png)

（1）分力F_2の大きさを36N，力FとX軸とのなす角を30°とするとき，分力F_1の大きさは何Nになるか。

| 解答群 | (ア) 84.0 | (イ) 104.4 | (ウ) 107.1 | (エ) 114.5 |

（2）分力F_1とX軸とのなす角αは何度になるか。

| 解答群 | (ア) 11.3 | (イ) 12.9 | (ウ) 16.7 | (エ) 19.0 |
図2のような平面図形がある。次の各間に答えなさい。ただし、単位はmmとする。

(1) 長方形Pの面積Aは何mm²になるか。
(2) 長方形Qの面積Asは何mm²になるか。
(3) 長方形Pの重心位置Gpは原点Oから何mmになるか。
(4) 長方形Qの重心位置Gqは原点Oから何mmになるか。
(5) 平面図形全体の重心位置Gは原点Oから何mmになるか。

図3は、てこの原理を利用したクルミ割りのようすを表している。点Bにあるクルミは、点Oを支点としたとき、W=75Nの力で割ることができる。次の各間に答えなさい。

(1) 支点Oからの距離が150mmのとき、このクルミを割るために点Aに加える力Fは何N以上にすればよいか。
(2) 点Aに20Nの力Fを加えてクルミを割りたいとき、支点Oからの距離は何mm以下にすればよいか。
図4は、横フライス盤に直径100mmのフライスを取り付けたようすを表している。次の各問に答えなさい。

図4

（1）フライスの切削速度を25m/minにするには、主軸の回転速度Nを何rpmにすればよいか。

（2）主軸の回転速度を90rpmに設定したとき、フライスの切削速度vは何m/minになるか。

（3）主軸の回転速度を120rpmに設定したとき、フライスの角速度ωは何rad/sになるか。

図5のように、厚さt=6mm、幅b=20mm、長さL=2000mmの平鋼に、引張荷重W=6kNが作用しているとき、次の各問に答えなさい。

図5

（1）断面積Aは何mm²になるか。

（2）材料に生じる引張応力σは何MPaになるか。

（3）伸びΔLが0.36mmのとき、縦ひずみεは何％になるか。ただし、答は小数第4位を四捨五入し小数第3位まで求めなさい。

（4）縦弾性係数Eは何GPaになるか。
図6のような、1つの集中荷重Wを受ける両端支持ばかりがある。次の各問に答えなさい。
ただし、せん断力と曲げモーメントの符号は図7とする。

図6

W=210N

R_a

750mm

1050mm

R_s

図7

（1）反力R_a, R_sは、それぞれ何Nになるか。
（2）AC間のせん断力Fは、何Nになるか。
（3）C点の曲げモーメントMは、何N・mmになるか。
（4）せん断力図と曲げモーメント図の正しい組み合わせはどれになるか。解答群から選び記号で答えなさい。

解答群

(ア) (イ) (ウ) (エ)
次の文中の（　）にあてはまる語句を選答群から選び、記号で答えなさい。

（1）引張試験において、比例限度内では応力とひずみは比例する。これを（　）という。
（2）平面上に静止している物体を動かそうとするとき、物体の材質や接触面の状態で決まる定数を（　）という。
（3）質量m[kg]の物体が速度v[m/s]で運動しているとき、$rac{1}{2}mv^2$[J]の（　）をもっている。
（4）機械や部材が安全であるように許される最大の応力を（　）応力という。
（5）軟鋼の応力－ひずみ線図において、極限強さに達する前に応力が増えなくてもひずみだけが増加する現象を（　）という。

<table>
<thead>
<tr>
<th>解答群</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ア) 運動エネルギー (イ) 運動方程式 (ウ) 許容 (エ) クリープ (オ) 領伏</td>
</tr>
<tr>
<td>(カ) 静摩擦係数 (キ) 静摩擦力 (ク) フックの法則 (ケ) 曲げ (コ) ヤング率</td>
</tr>
</tbody>
</table>
機械設計 解答用紙

平成24年度 標準テスト（機械）

<table>
<thead>
<tr>
<th>科目</th>
<th>学年</th>
<th>級</th>
<th>番号</th>
<th>氏名</th>
<th>得点</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>(1)</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>(2)</td>
<td>N</td>
</tr>
<tr>
<td>3</td>
<td>(3)</td>
<td>m/s</td>
</tr>
<tr>
<td>4</td>
<td>(4)</td>
<td>μm</td>
</tr>
<tr>
<td>5</td>
<td>(5)</td>
<td>分</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>(1)</th>
<th>mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>(2)</td>
<td>MPa</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>GPA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>(1)</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2)</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>N·mm</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>(1)</th>
<th>rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>(2)</td>
<td>m/min</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>rad/s</td>
</tr>
<tr>
<td>問題番号</td>
<td>解 答</td>
<td>配点</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>(1)</td>
<td>8.7×10^{-2} m</td>
<td>各4点</td>
</tr>
<tr>
<td>(2)</td>
<td>63.7 N</td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>80 m/s</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>38 μm</td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td>33.2 分</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>問題番号</th>
<th>解 答</th>
<th>配点</th>
<th>合計点</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>120 mm²</td>
<td>各3点</td>
<td>12点</td>
</tr>
<tr>
<td>(2)</td>
<td>50 MPa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>0.018 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>277.8 GPa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>問題番号</th>
<th>解 答</th>
<th>配点</th>
<th>合計点</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>RA 60 N</td>
<td>各3点</td>
<td>15点</td>
</tr>
<tr>
<td>(2)</td>
<td>RB 150 N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>45000 N・mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>問題番号</th>
<th>解 答</th>
<th>配点</th>
<th>合計点</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>K</td>
<td>各3点</td>
<td>15点</td>
</tr>
<tr>
<td>(2)</td>
<td>K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>問題番号</th>
<th>解 答</th>
<th>配点</th>
<th>合計点</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>79.6 rpm</td>
<td>各3点</td>
<td>9点</td>
</tr>
<tr>
<td>(2)</td>
<td>28.3 m/min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3)</td>
<td>12.6 rad/s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>